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ABSTRACT

This paper describes a package for analytical ray tracing of 
relatively simple optical systems.  AESOP (An Extensible 
Symbolic Optics Package) enables analysis of the effects of 
small optical element misalignments or other perturbations.  
(It is possible to include two or more simultaneous 
independent perturbations.)  Wavefront aberrations and 
optical path variations can be studied as functions of the 
perturbation parameters.  The power of this approach lies in 
the fact that the results can be manipulated algebraically, 
allowing determination of misalignment tolerances as well as 
developing physical intuition, especially in the picometer 
regime of optical path length variations. 

1. Introduction

Modern high-precision optical systems, such as space astrometric interferometers (e.g. FAME: 
Johnston et al. 1997; POINTS: Reasenberg et al. 1996; GAIA: Loiseau and Malbet 1996, Loiseau 
and Shaklan 1996; Lindegren and Perryman 1996; SIM: SIM97), can require optical path 

tolerances in the sub-nanometer (  = 1 nm 10
( )−9

m) to picometer (  = 1 pm 10
( )−12

m) regimes over 
total path lengths on the order 10 m.  Such tolerances place extreme requirements on optical 
analysis programs.  Two questions are of paramount importance:  1) to which specific 
perturbations is a system most sensitive? and 2) are there couplings between different 
perturbations that produce high sensitivities (i.e., are there strong correlations between 
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perturbation parameters)?  AESOP can be used to answer these questions (Murison, 1993), as well 
as to develop physical intuition in the picometer optical path difference (OPD) regime.

A common optical subsystem employed in astronomical interferometers is a beam compressor, 
used to convert a large aperture input beam (starlight) to a narrow output beam (~1 cm) suitable 
for combining with another such beam to produce interference fringes of sufficient visibility.  A 
typical beam compressor consists of a pair of confocal paraboloidal mirrors, as sketched in Figure 
1.  If perfectly aligned, a flat input wavefront results in a radially compressed flat output 
wavefront.  Misalignment analysis of even such a simple system as this generally requires 
resorting to numerical programs.  Usually, such programs are ill-suited for studies involving both 
misalignment parameter variation and aperture-averaged OPD determination, especially in the pm 
regime.  The need for picometer OPD tolerances is a relatively recent development, driven by ever 
more demanding sciece objectives.  Such tolerance requirements will likely become more 
common, and the lack of adequate analysis tools will correspondingly be felt more strongly.

To develop a physical understanding of alignment sensitivities, one would much prefer an 
analytical rather than a numerical description of the output wavefront as a function of the 
misalignment parameters.  Unfortunately, an analytical wavefront description of misaligned 
optical systems as simple as a beam compressor, or even a single focussing optic, can be too 
complex to attempt by hand in the kind of detail required for sensitivity studies (see, e.g., Noecker 
et al. 1993).  However, computer algebra systems such as Maple have advanced to such a state of 
capability and sophistication that, coupled with the processing power of modern desktop 
computers, complete analytical descriptions are, as we shall see, now becoming possible.  This 
paper describes AESOP (An Extensible Symbolic Optics Package), an analytical ray tracing 
package written in the Maple programming language.

AESOP was developed to support the analysis effort involved in determining critical sensitivities 
to optic misalignments in a proposed dual interferometric astrometric telescope, POINTS 
(Reasenberg et al. 1988, 1995a, 1995b, 1996).  POINTS consists of a pair of independent 
Michelson stellar interferometers and a laser metrology system that measures both the critical 
starlight paths and the angle between the two interferometer baselines.  The nominal design has 
baselines of 2 m, telescope apertures of 35 cm, and observes target stars separated by roughly 90 
degrees.  One of the distinguishing features of POINTS is that it employs holographic optical 
elements (HOEs) to accomplish picometer metrology over the full aperture of the starlight optical 
path.  See the Reasenberg et al. references for a full description of the instrument, its capabilities, 
and the astrophysical, astrometric, and planet-finding science that POINTS would significantly 
impact.  Also, information can be found on the POINTS web pages at 
http://www-cfa.harvard.edu/~reasen/points.html.

A key analysis problem regarding the POINTS interferometers is the determination of optical path 
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length errors as a function of various optical element misalignments. The path length error budget 
in a precision system such as this is only several tens of picometers.  With such a tight error 
budget, it is imperative to determine which perturbations lead to large path length errors.  At the 
pm level, often we cannot trust our optical intuition in determining misalignment sensitivities.  In 
such cases, we must rely on numerical analysis to an uncomfortable degree, lacking reliable 
independent checks on the numerical results.  AESOP was created in part to fill this niche.  In the 
case of POINTS, a numerical program called RayTrace (see Murison (1993) for a description) was 
written specifically to perform ultra-high precision, sub-picometer OPD variation analyses.  
AESOP was developed in parallel with RayTrace.  The two analysis approaches -- numerical and 
analytic -- are completely independent and therefore serve as excellent checks upon one another.  

AESOP traces an input ray through a misaligned optical system and produces an analytic 
description of the output ray as a function of the system parameters, the misalignment parameters, 
and the input ray position and direction.  A crucial diagnostic is the aperture-averaged OPD 
variation.  The physical principles involved are quite simple, since AESOP takes a classical 
geometric optics approach.  At a given reflecting surface, all that is required is to calculate the 
reflected ray direction and the accumulated optical path up to that intersection point.  Similarly, at 
a refracting surface we use Snell's law to calculate the refracted ray direction.  If a holographic 
optical element (HOE) is encountered, it is a similarly simple process to calculate the output ray 
direction and the change in optical phase across the element (Murison and Noecker, 1993).  The 
POINTS optical subsystems involve all three types of optical surfaces.  AESOP currently handles 
reflecting and holographic optical elements.  Refracting surfaces will be easy to add, due to the 
extensible structure of AESOP.

As simple as the physics is, such a ray tracing process is impossible to do analytically by hand 
(especially aperture-averaged effects and wavefront analysis).  The inhibiting factor is the rapidly 
increasing (with each successive optical surface) complexity of the intermediate expressions that 
must be algebraically manipulated.  This kind of repetitive manipulation of unwieldy objects is 
precisely what computers can do well.  Hence, a programmable computer algebra system like 
Maple is well suited in principle to analyzing misaligned optical systems, at least simple ones 
involving relatively few focussing optical surfaces.  

In section 2, a few mathematical topics relevant to this kind of ray tracing in general and to 
AESOP in particular are briefly reviewed.  Most optical surfaces are conicoids, so quadric 
surfaces and their normal vectors are introduced in section 2.1.  Section 2.2 introduces the 
concepts of optical rays, ray bundles, and wavefronts.  Sections 2.3 and 2.4 explain the methods 
used by AESOP to determine the intersection of a ray with an optical surface and calculate the exit 
ray direction.  Section 2.5 covers the averaging of wavefront error over the aperture of a centrally 
obstructed optical system (common in astronomical systems).  Section 2.6 introduces the 
expansion of a perturbed wavefront in a Zernike series, the low-order components of which 
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correspond to the classical wavefront aberrations such as coma, astigmatism, etc.  The Zernike 
series representation of a wavefront is extremely convenient, instructive, and a helpful aid in the 
analysis of perturbed optical systems (as we shall see in Appendix B).  

Assuming the background material in section 2, section 3 covers the AESOP design approach.  
Optical systems and geometric ray tracing lend themselves naturally to an object-oriented design, 
which AESOP takes full advantage of.  Indeed, many design simplifications result, helping to 
make analytical ray tracing not only feasible but extensible as well.  In practice, it has proven easy 
to extend AESOP capabilities as new ones are needed, though one does have to be careful to 
enforce the encapsulation structure of the AESOP objects, since the Maple language is not itself 
object oriented.  Finally, section 3.2 gives an overview of the AESOP ray tracing process.  
Appendix A contains a calculation of the unit normal vector for quadric surfaces.  Appendix B 
includes excerpts of a Maple session in which a misaligned beam compressor is analyzed by 
AESOP. 

2. Mathematical Considerations

2.1 Quadric Surfaces

2.1.1 Surface Families

A general conicoid, or quadric surface, has the form

      = ( )s ρ
ρ

2

 + 2 f  − 4 f
2 ε ρ2

 

where ρ is the perpendicular distance from the axis of symmetry, f is the focal length at 
the vertex, and ε is the conic constant.  The quadric surface types as a function of ε are:

     ε = 0         paraboloid of focal length f

     ε = 1         spheroid of radius 2 f

     ε < 0         hyperboloid

     0 < ε < 1   prolate spheroid

     ε > 1         oblate spheroid

The eccentricity of a prolate spheroid is  = e
 − 1 ε

ε
, and that of an oblate spheroid is 

 = e
 − ε 1

ε
.  Commonly, the conic constant is denoted by  = k  − ε 1 so that  = k 0 refers to a 

spheroid.  The quantity used here is more convenient for our purposes, since the 
paraboloid is the most frequently encountered focussing surface in astronomical optics.  
For small values of ρ we have
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assume(f>0):

sag := rho^2 / (2*f + sqrt(4*f^2 - epsilon*rho^2)):

s(rho) = series( sag, rho, 7 );

 = ( )s ρ  +  +  + 
1

4

1

f
ρ

2 1

64

ε

f
3

ρ
4 1

512

ε
2

f
5

ρ
6

( )O ρ
8

The leading term we recognize as the sagitta of a paraboloid.  All conicoids are 
paraboloidal at second order.  Hence, all conicoids exhibit arbitrarily good focussing of a 
sufficiently narrow, on-axis input wavefront.  The first aberrational term is spherical 
aberration, which enters in with a linear term at fourth order in radius.  We see that 
wavefront aberrations are a function of conicoid family type.

2.1.2 The Surface Normal Vector

The vector grad s is the projection onto the xy plane (  = ρ  + x
2

y
2 ) of a vector which is 

normal to the convex side of the surface s.  Define the surface function 
 = ( )g , ,x y z  − z ( )s ,x y .  Then

      = N
( )grad g

( )grad g
  =  









, ,−











∂

∂

x
s −











∂

∂

y
s 1

( )grad g
 

is a unit vector normal to the surface on the concave side.  Calculation of the surface 
normal vector is the crucial step in determining the output direction of a ray incident on an 
optical surface.  As shown in Appendix A, we have a relatively simple result for 
conicoids:

     = N



















, ,−
x

 + ( ) − 1 ε ρ
2

4 f
2

−
y

 + ( ) − 1 ε ρ
2

4 f
2

 − 4 f
2 ε ρ

2

 + ( ) − 1 ε ρ
2

4 f
2

 

2.2 Rays, Ray Bundles, and Wavefronts

In the geometric optics regime, we may develop the concept of a wavefront W as follows.  
Consider an infinitely narrow beam, or ray, r, defined by an anchor point p, a point in space 
from which the ray originates; a propagation direction v, conveniently but not necessarily 
represented as a unit vector; and an optical path length (OPL) t, defined as the index of 
refraction n of the propagation medium integrated over a geometric distance L from p along v: 

 = t d
⌠
⌡

0

L

( )n l l.  Hence, we may write  = r  + p t v.  

A wavefront may be viewed as a surface W in R3 of constant optical phase propagating 
through space (or through an optical medium).  An infinitesimally small neighborhood U ε W 
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of each point p ε W propagates in a direction ( )v p  that is normal to W at p.  We can therefore 
associate a ray with each point of W.  We define a ray bundle as the set of rays belonging to W
.  A concave wavefront (or portion of a wavefront) produces a converging ray bundle, and a 
convex wavefront produces a diverging ray bundle. 

 

In an analytical ray tracing procedure, one can consider a single ray that is transformed by 
passage through an optical system.  The resulting output ray then strikes a detector surface.  
The position on the detector of the output ray intersection point, the output ray direction, and 
the total OPL (the optical path from the incident ray anchor point to the detector surface) are 
all functions of the input ray anchor point and direction.  Taking the input ray anchor point 
position as lying on an incident wavefront (a function we can represent analytically, usually a 
plane), we can construct a corresponding output wavefront from the ray trace of the input ray.  

2.3 Surface Intersection Point

Given a ray propagating toward an optical surface, we must find the intersection point of the 
ray with that surface.  Define the surface local coordinate frame with origin at the surface 
vertex and Z axis along the vertex normal.  An equation for an input ray parameterized by 
optical path t is

      = ( )r t  + r
0

t v

where  = r
0

[ ], ,x
0

y
0

z
0

 is the ray anchor point and v is the unit direction vector

      = v [ ], ,sin ψ cos λ sin ψ sin λ cos ψ  = [ ], ,v
x

v
y

v
z

 

where ( ,ψ λ) are the polar and azimuthal angles with respect to the +Z axis and 
counterclockwise from the +X axis in the local coordinate frame, respectively.  The equation 
of the surface -- the sagitta -- in the local coordinate frame is of the form

      = ( )g , ,x y z  − z ( )s .x y  = 0

We can find the value of t which corresponds to the intersection point (x,y,z) by substituting

      = x  + x
0

t sin ψ cos λ =  + x
0

t v
x

      = y  + y
0

t sin ψ sin λ   =  + y
0

t v
y

      = z  + z
0

t cos ψ          =  + z
0

t v
z

into the scalar equation ( )g , ,x y z  and solving for t.  For a (perhaps perturbed) quadric surface 
there will in general be two solutions.  AESOP automatically chooses the correct solution.  
Then we substitute the solution for t back into the equations for the ray,

      = ( )r t  + r
0

t v

to determine the x, y, and z values of the intersection point.  
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2.4 Exit Ray Direction

Upon encountering an optical surface, a ray must know how to interact with that surface and 
choose an output direction.  After the intersection point is found, we determine the unit 
normal vector at that point, thus providing a local reference for measuring input and output 
angles.  The normal vector is easily found from the gradient of the surface equation at the 
intersection point.  

2.4.1 Reflection

For a reflecting surface, the incident and reflecting angles are equal.  The reflected beam 
lies in the plane defined by the incident beam and the normal to the surface at the 
intersection point.  Thus, we can write the reflected ray direction as being equal to the 
incident ray direction plus a component along the surface normal vector direction,

      = v
r

 + v
i

α N 

where subscripts r and i correspond to the reflected and incident rays, respectively, N is 
the normal to the surface at the intersection point, and α is a scale factor that must be 
determined.  Since the incident and reflected angles are equal, we have

      = 
( )dot ,N v

r

N v
r

−
( )dot ,N v

i

N v
i

 

Combine this with

      = ( )dot ,N v
r

 + ( )dot ,N v
i

α N
2 

and the further condition that the magnitude of the reflected beam is equal to the 
magnitude of the incident beam (certainly true if v

i
 and v

r
 are unit vectors), and we can 

solve for α:

      = α −
2 ( )dot ,N v

i

N
2

 

After v
r
 is determined, the result is then transformed back to the global reference frame 

for propagation of the ray to the next optical surface.

2.4.2 Refraction

For a refracting surface, we must use Snell's law, which leads to more complications than 
the simple law of reflection.  As in the reflecting case, we may write

      = v
r

 + v
i

α N  

where the subscript r is associated with the refracted ray.  But now we have the condition

      = n
i

sin θ
i

n
r

sin θ
r
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where n
i
 and n

r
 are the indices of refraction and  θ

i
 and θ

r
 are the corresponding angles of 

incidence and refraction.  Using  = ( )dot ,N v
r

 + ( )dot ,N v
i

α N
2 , the condition  = v

r
v
i

 , 

and Snell's law, we find that the scale factor is 

      = α

v
i

















 −  − 1

















n
i

n
r

2

sin
2 θ

i
cos θ

i

N
 

where θ
i
 is determined from the incident beam direction via

      = cos θ
i

( )dot ,N v
i

N v
i

 

2.4.3 HOE Diffraction

2.4.3.1 Direction of the Diffracted Ray

An adequate description of ray tracing across a holographic optical element (HOE) is 
beyond the scope of this paper.  However, it is part of AESOP's current capabilities, 
so I present the relevant equations here, without motivation or proof.  HOE ray tracing 
is mostly neglected in the standard optics texts, with the exception of Welford (1986).  
Even in the latter, the account is incomplete, cursory, and potentially misleading.  The 
reader is referred instead to Murison and Noecker (1993) for a complete and accurate 
development.  

Define the quantity  = T 1 for transmission (i.e., the incident ray passes through the 
HOE), and  = T −1 for reflection (for example a diffraction grating ruled on the surface 
of a mirror).  Then let us define

      = S T ( )sign ( )dot ,N v
i

 

where N is now the unit normal vector at the surface intersection point, and v
i
 is the 

incident beam direction of propagation (also now required to be a unit vector).  
Additionally, define the auxiliary vector

      = u  − ( )cross ,N v
i

m λ 







cross ,N  − k
c
1

k
c
2

λ
c

 

where m is the diffraction order (an integer), λ is the readout wavelength (i.e., 
wavelength of the incident wavefront), λ

c
 is the HOE construction wavelength, and 

k
c
1
 and k

c
2
 are related to the unit vectors directed from the HOE construction points 
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to the surface intersection point.  If ,v
1

v
2
 are those unit vectors, then  = k

c
1

V
1

v
1
 and 

 = k
c
2

V
2

v
2
, where  = V

k
1 (k=1,2) if the construction point C

k
 is a real focus and 

 = V
k

−1 if the construction point C
k
 is a virtual focus.  Then the diffracted ray 

direction, a unit vector, is given by

      = v
r

 − S  − 1 u
2

N ( )cross ,N u  

2.4.3.2 Optical Path Correction

In geometrical ray tracing of a HOE, a correction must be added to the optical path 
upon traversing the HOE surface.  Again, refer to Murison and Noecker (1993) for a 
detailed development. The corrected optical path is

      = L  − ( )L
0

p ∆ ( )L p  

where ( )L
0

p  is the optical path to the surface intersection point p as calculated in the 

normal geometric way, and

      = ∆ ( )L p

m λ ( ) − ( )D p ( )D p
0

λ
c

 

is the phase correction.  p
0
 is an arbitrary reference point; for a conicoid, a good 

choice is the location of the surface vertex.  [The location of  p
0
 can be arbitrary since 

it introduces a constant offset in the optical path.  We are only interested in optical 
path differences (or variations).]  The distance function D is a function of the HOE 
construction points and is given by the expression

      = ( )D p  − V
1

( )v
1

p V
2

( )v
2

p  

2.5 OPD Averaged over an Annular Aperture

One may define the optical path difference (OPD) as the difference in total optical path 
through a system, starting from an initial ray anchor position ( ,ρ φ), minus the total optical 
path of an axial ray through the unperturbed system (the fiducial, or chief, ray).  The output 
wavefront is then conveniently represented by the OPD.  Frequently, we have need of the 
OPD averaged over the beam aperture.  Generally, there is a central (usually circular) 
obscuration, for example the secondary mirror in a telescope.  Hence the OPD averaged over 
an annular input beam of inner and outer radii a and b is

      = OPD
avg

d
⌠
⌡

a

b

d
⌠
⌡

0

2 π
ρ ( )OPD ,ρ φ φ ρ

π ( ) − b
2

a
2
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Once the OPD is determined by tracing a ray through the system (and subtracting the fiducial 
ray optical path), the averaging integral is easy to perform.  The procedure annular_average() 
is the AESOP function that does this.

2.6 Expansion of the Wavefront in a Zernike Series

Zernike circle polynomials are a complete orthogonal set over the interior of the unit circle.  
Hence an arbitrary function ( )W ,ρ φ , where ρ is restricted to the range [0,1], may be 
completely represented by an infinite series of Zernike polynomials.  We may write

      = ( )W ,ρ φ ∑
 = n 0

∞ 











∑

 = m 0

∞
( ) + A

,n m
( )U

,n m
,ρ φ B

,n m
( )V

,n m
,ρ φ  

where the values of m are restricted to  =  − n m even, A and B are coefficients, and U and V are 
given by

      = ( )U
,n m

,ρ φ ( )R
,n m

ρ ( )cos m φ  

      = ( )V
,n m

,ρ φ ( )R
,n m

ρ ( )sin m φ  

where the radial polynomials R are given by

      = ( )R
,n m

ρ ∑
 = k 0

 − n m

2 ( )−1
k

!( ) − n k ρ
( ) − n 2 k

!k !








 − 

 + n m

2
k !









 − 

 − n m

2
k

 

See Murison (1995) for a discussion, including determination of the coefficients and an 
example using AESOP.  [See also Born and Wolf (1980) and Zernike (1934) for more 
information on Zernike polynomials.]

The Zernike series representation is useful for providing explicit expressions for the 
well-known low-order wavefront aberrations such as coma, astigmatism, defocus, and so on.  
This turns out to be an appealing way of converting the often large and inscrutable AESOP 
wavefront expressions into tidy, intuitively understandable results.  In general, the  = m 1 terms 
correspond to coma, and the  = m 2 terms correspond to astigmatism, with n degrees of radial 
"rippliness".  Hence, the classical aberrations are

     n=1, m=1     wavefront tilt

     n=2, m=0     defocus

     n=2, m=2     astigmatism

     n=3, m=1     coma

     n=4, m=0     spherical aberration

Another low-order, but non-classical, aberration that is sometimes important is the "trefoil" 
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term n=3, m=3.  Zernike components of the wavefront are illustrated in the example shown in 
Appendix B.  Another advantage of a Zernike series representation is that each Zernike term 
affects the variance independently.  Hence, the Zernike polynomials  
minimize the wavefront variance term by term.

3. AESOP Design Considerations

3.1 An Object Oriented Approach

Geometrical optics lends itself very naturally to an object-oriented approach when creating 
computer programs, either numerical or algebraic.  AESOP takes advantage of this by 
defining useful objects as Maple table structures.  These Maple tables contain, or encapsulate, 
all of the information relevant to the corresponding objects.  The Maple procedures that 
constitute AESOP, and which the user uses to create a Maple procedure which can analyze an 
optical system, manipulate these AESOP objects.  Following is a list of the most important 
AESOP objects with brief descriptions.

3.2 AESOP Objects

3.2.1 Optical Surface Data Structure

The optical system is comprised of AESOP optical elements.  Each element type has a 
corresponding procedure which, given certain information, creates the optical element 
object.  All AESOP optical elements share a common table structure.  The table element 
[eqn] contains the equation describing the optical element's surface shape (usually, but not 
necessarily, a conicoid) in the surface local coordinate frame.  The local frame origin is 
located at the surface vertex, and the positive Z axis is coincident with the vertex normal 
vector.  The [dir] and [pos] elements contain, respectively, a Maple vector and an AESOP 
point which describe the surface vertex normal vector direction and the vertex position, 
both in the global reference frame.  The [type] element is the object identifier.  Finally, the 
[coord] table element is a point which contains the ( , ,x y z) coordinate labels that the user 
wishes to appear in the [eqn] expression.  An example will make this clear:

read `objects.p`:

spheroid( f, point([a,b,c]),  
          vector([d[u],d[v],d[w]]), [u,v,w] );

table([

 = coord [ ], ,u v w

 = type mirror

 = eqn  −  + w 2 f  −  − 4 f
2

u
2

v
2

 = flen f

 = pos [ ], ,a b c
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 = dir [ ], ,d
u

d
v

d
w

 = cc 1

])

Usually, one uses ( , ,x y z) for the coordinate labels.

3.2.2 AESOP Optical Surface Objects

The current AESOP optical surface types are as follows.  They all have the same Maple 
table structure and, for the most part, differ only in the form of the equation describing the 
surface.  This assortment represents the surface types needed in analyzing POINTS; other 
types are easy to add as need arises.

3.2.2.1 optical_flat

The optical_flat is a mirror with infinite focal length.  It is the simplest optical 
surface.

3.2.2.2 conicoid

The conicoid is a reflecting surface with a general conicoid shape which is a function 
of the conic constant.

pos := point([a,b,c]):  

dir := vector([v[x],v[y],v[z]]):

conicoid( f, epsilon, pos, dir, [x,y,z] );

table([

 = coord [ ], ,x y z

 = type mirror

 = eqn  − z
 + x

2
y
2

 + 2 f  −  − 4 f
2 ε x

2 ε y
2

 = flen f

 = pos [ ], ,a b c

 = dir [ ], ,v
x

v
y

v
z

 = cc ε

])

3.2.2.3 spheroid, paraboloid

Because the equation for a quadric surface simplifies somewhat for the special conic 
constant value  = ε 1, a separate spheroid surface is available.  Similarly, the 
paraboloid is a conicoid with the special value  = ε 0. 

3.2.2.4 asphere

The asphere object is one whose conicoidal surface is perturbed by a series of radial 
ripples.  AESOP employs a general asphere model of the form
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      = ( )s ρ  + 
ρ

2

 + 2 f  − 4 f
2 ε ρ2













∑

 = k 1

∞
A

k
ρ

k
 

which is a conicoid plus a radial power series.  The AESOP generating function for 
this is asphere().  Here is an illustrative example:

clist := [ seq( A[i], i=1..4 ) ]:

asphere( f, epsilon, clist, pos, dir, [x,y,z] );

table([

 = coord [ ], ,x y z

 = type mirror

eqn z
 + x

2
y
2

 + 2 f  −  − 4 f
2 ε x

2 ε y
2

A
1

 + x
2

y
2

A
2

( ) + x
2

y
2

A
3

( ) + x
2

y
2

 / 3 2
 −  +  +  +  = 

A
4

( ) + x
2

y
2

2
 + 

 = flen f

 = pos [ ], ,a b c

 = dir [ ], ,v
x

v
y

v
z

 = cc ε

])

3.2.2.5 pHOE

The procedure pHOE() creates a simple focussing HOE on a paraboloidal mirror of 
focal length f.  It is assumed that one of the construction points, say C

2
, is virtual, so 

that a beam starting from the other construction point, C
1
, will diffract to a focus at 

C
2
.  Further restrictions are that the diffraction order  = m 1, and the readout 

wavelength is equal to the construction wavelength.  C
1
 and C

2
 must be specified in 

the surface local frame.

3.2.2.6 beam_splitter

This is identical to the optical_flat object except for the identification tag.  The 
beam_splitter object exists solely for human convenience and program readability.

3.2.2.7 lens

Currently, lenses are unimplemented.  Declaration of a lens will produce an error 
message.  

3.2.3 Miscellaneous Objects

point

An AESOP point is identical in most respects to a Maple vector.  It's main purpose is 
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to support the conceptual distinction between a direction vector and a position (point) 
in space.  The AESOP point object is restricted to three components.  Otherwise, it is 
equivalent to a Maple vector with three elements and is recognized by Maple as such.  
There is a corresponding `type/point` function so that the Maple type procedures 
(such as is(), hastype(), etc.) will recognize the AESOP point.  

beam

A beam object is a Maple table that has four elements.  The first two elements consist 
of an AESOP point [pos], which contains the beam (or ray) anchor position, and a 
Maple vector [dir], which contains the ray propagation direction vector.  Next is a 
scalar element [path] for storing the expression corresponding to the accumulated 
optical path.  Finally, a beam contains an identifier ['type'] := 'beam', which 
procedures may query to check that the object is a beam.  An associated type() 
function makes the Maple type procedures aware of beams.  It is a beam object 
which serves as the optical ray being propagated through an optical system.

3.3 How AESOP Does Ray Tracing

An overview of the ray tracing process using AESOP is as follows.  

(1) In a Maple procedure that the user writes, the user first defines the various optical elements 
comprising the optical system.  These surfaces are assembled into a Maple list which AESOP 
routines will make use of.  Perturbations (misalignments) are applied in the form of rotations 
and/or translations of specified optical elements.  AESOP provides object rotation and 
translation procedures to make this a simple process.

(2) The user then defines the input ray, which is subsequently launched into the optical system 
by calling the AESOP procedure raytrace().  AESOP then automatically traces the ray to each 
successive optical element, performing series expansions on the perturbation parameter(s) as 
necessary and simplifying the cumbersome expressions as as much as possible, until finally an 
output ray is produced at the detector.  Progress during this process is communicated via 
informational messages and key intermediate expressions to the monitor screen.  If nothing 
else, there is plenty of stuff the user can peruse while waiting for the ray trace to finish, since 
AESOP is intentionally a bit chatty.

(3) The OPD is then calculated from the output ray expressions, followed by calculation of the 
aperture-averaged OPD.

(4) Optionally, the Zernike components of the OPD are determined next, either at the Maple 
prompt or from within the user's driver procedure.  The resulting Zernike coefficients may 
then be combined to produce wavefront aberration plots.  The aberrated wavefronts are 
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represented by 3D Maple surface plots.  Maple procedures are supplied for making the 
wavefront plots in the Maple worksheet.  

An illustrative example of this entire process for a simple beam compressor is shown in 
Appendix B.

In practice, the essential step for useful analytical ray tracing is to make series expansions at 
each intersection of a ray with an optical surface.  (The original insight for this trick is due to 
R.D. Reasenberg.)  This reduces the "equation bloat" considerably.  Even so, it is still rather 
easy to cause the intermediate expressions to mushroom in size so that they overwhelm the 
available machine resources.  The equation bloat seems to go as some power of the number of 
focussing optical elements in a system.  Flat surfaces certainly contribute to increasing 
equation complexity, but at a rate that pales in comparison to that of focussing surfaces.  

  

Since we are interested in analyzing optical systems whose elements are slightly misaligned, 
the small parameters to perform the series expansion on are naturally the misalignment 
perturbations.  Hence, AESOP is not meant to analyze the very interesting properties of ideal, 
perfectly aligned optical systems.  It requires at least one misalignment or other perturbation 
parameter.

For a given optical system, a certain amount (sometimes a great amount) of tinkering on the 
part of the user is required to hit upon the best ways of simplifying the cumbersome 
expressions so that their size is managable.  Great care has been taken in the types of 
simplification taking place in the AESOP ray tracing routines.  However, they are no doubt 
optimized for the particular systems the author has analyzed and will therefore perhaps be less 
than optimum for other kinds of optical systems.  Hence, AESOP is nowhere near the "black 
box" stage, where a user can provide necessary input, crank the handle, and magically produce 
an answer without caring overmuch about the internals of the black box.  Nonetheless, 
AESOP can be quite useful and represents a significant advance in capability for analyzing 
perturbed optical systems and performing misalignment sensitivity studies.  It also serves as 
an invaluable check on numerical programs as well as an essential aid to developing reliable 
insight into the arcane and beautiful world of high-precision optics.  

4. Availability

The AESOP source code, help files, examples, background papers, and other information may be 
found at the web site http://aa.usno.navy.mil/AESOP/.  
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Appendix A: The Unit Normal Vector of a Quadric Surface

The sagitta is

sag;

ρ
2

 + 2 f  − 4 f
2 ε ρ

2

Convert the sagitta to a function of (x,y).

sagxy := subs(rho=sqrt(x^2+y^2),sag):

Then take the gradient and collect on ε.

map(collect, grad(z-sagxy,[x,y,z]), [epsilon]):
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Now replace x and y with ρ, where convenient.  We get the resulting gradient vector

g := map( collect, subs(x^2+y^2=rho^2,"), [x,y,z] );

g




















−  − 
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 + 2 f  − 4 f
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ρ2 ε
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2 ε ρ
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y 1,










Now that we have the gradient term, form the unit normal vector.

v := array( [ -diff(sagxy,x), -diff(sagxy,y), 1 ] ):

subs( x^2+y^2=rho^2, evalm( v / mag(g) ) ):

N := map( collect, ", [epsilon,x,y] );

N ρ2
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where mag() is a function which returns the magnitude of a vector.  This expression can be 

simplified considerably.  Let's get rid of the x2 and y2 terms and substitute Q2 for  − 4 f
2 ε ρ

2
. 

assume(Q>0):

map( simplify, N, { x^2+y^2=rho^2, 4*f^2-epsilon*rho^2=Q^2 }, [x,y,f] ):

Simplifying again, we get the pleasing result

map( simplify, " );















, ,−
x

 + ρ2
Q

2
−

y

 + ρ2
Q

2

Q

 + ρ2
Q

2

That is, we have

N := subs( Q=sqrt(4*f^2-epsilon*rho^2), " ):

N := rootfunc( N, collect, rho );

 := N



















, ,−
x

 + ( ) − 1 ε ρ
2

4 f
2

−
y

 + ( ) − 1 ε ρ
2

4 f
2

 − 4 f
2 ε ρ

2

 + ( ) − 1 ε ρ
2

4 f
2

(The procedure rootfunc() applies an arbitrary procedure to an expression which contains 
subexpressions raised to fractional powers.  Now, the Maple procedure collect() allows one to 
collect on a set of variables and apply a function to the coefficients of those variables, but it 
unfortunately ignores expressions raised to fractional powers.  rootfunc() also automatically 
processes the components of vectors and lists.  It is a handy function for easy manipulation of 
expressions under radicals.)

Appendix B: A Sample AESOP Run

B.1 OPD Calculation
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Following is a Maple session in which AESOP is used to calculate the aberrated wavefront of 
a misaligned beam compressor.  The primary mirror has focal length f, and the beam 
compression ratio is denoted by C.  The perturbation consists of a rotation of the primary 
mirror about its vertex by an angle θ.  The detector surface (a plane) is located a distance d 
below the primary mirror surface.  The drive procedure, in which the optical system is defined 
and AESOP ray tracing invoked, is called BeamComp().  The first argument of BeamComp() 
is the perturbation type, in this case the primary mirror rotation.  The third and fourth 
arguments are the order of the expansions in θ and in radius.  

read `d:/optics/BeamCompressor.p`;
#===========================================# 
#                   AESOP                   # 
# (An Extensible Symbolic Optics Processor) # 
#             version 96.10.02              # 
#===========================================# 
#              Marc A. Murison              # 
#          U.S. Naval Observatory           # 
#      Astronomical Applications Dept.      # 
#       murison@riemann.usno.navy.mil       # 
#      http://aa.usno.navy.mil/AESOP/       # 
#===========================================#

 
Use: 
  BeamComp( pert_type1::integer,  #first perturbation type 
            eps1::name,           #name of first pert. variable 
            pert_type2::integer,  #second perturbation type 
            eps2::name,           #name of second pert. variable 
            order_eps1::integer   #expansion order of first pert. 
            order_eps2::integ     #expansion order of second pert. 
            order_r::integer      #radial expansion order 
  ) 
 
Perturbation Types: 
  TRANS_PRIMARY      translation of primary mirror in X 
  ROT_PRIMARY        rotation of primary mirror around Y axis 
  TRANS_SECONDARY    translation of secondary mirror in X 
  ROT_SECONDARY      rotation of secondary mirror around Y axis 
  FIELD              rotation of the input ray around X axis 
  NOTHING            do nothing 
 
Example: 
  verbosity := 1: 
  assume( Delta >= 0, psi >= 0 ): 
  BeamComp( TRANS_PRIMARY, Delta, ROT_SECONDARY, psi, 2, 10 ); 
 
NOTE: you MUST assume(eps1 >= 0): and assume(eps2 >= 0): 
      before calling BeamComp()

verbosity := 1: 
assume( theta >= 0 ): 
BeamComp(ROT_PRIMARY,theta,NOTHING,dummy,3,12);

[...much output deleted...]
BeamComp[518]: Done!

This run took 518 seconds on a 100 MHz Pentium machine with 32 MB of RAM available.  
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Peak memory usage, as reported by the Maple status bar, was 10.4 MB.  The wavefront and 
the aperture-averaged wavefront, which are the main results (and which are too bulky to 
reproduce here),  are stored in the global variables OPD and OPD_avg.

B.2 Zernike Series Decomposition of the Wavefront

In this section we perform a Zernike series analysis of the wavefront (OPD) just calculated.  
First, we set the compression ratio to 10, the distance to the detector to 20 cm, and normalize ρ 
so that it spans the interval [0,1] and now R represents the radius of the input beam.  The OPD 
simplifies to

opd := subs( rho=R*rho, C=10, d=20,  
             collect( OPD, [theta,cos(phi),sin(phi),rho], simplify ) );

opd
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Now we perform the Zernike series expansions on the OPD to the same order in radius that 
the ray trace calculation used.  The procedure ZernikeSeries() automatically calculates all 
nonzero Zernike series coefficients, up to and including the order specified.  I have clipped the 
output, due to space constraints.  

ZernikeSeries(opd,12,[theta],ON,'c','S');

[...output deleted...]

The Zernike series coefficients are now in a globally accessible table called c, and the Zernike 
wavefront representation is stored in the global variable S.  Determination of the Zernike 
series coefficients is a time-consuming process (this particular example took ~11 minutes), 
but it is not memory intensive like the ray tracing process.  To show an example, the classical 
coma term is 

ZernikeTerm(3,1,c);
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We see that it has a first-order term in θ (other aberrations begin at second order in θ).  Hence, 
we expect coma to be an important aberration resulting from rotational misalignment of the 
primary mirror.  (In fact, for this particular example, it turns out that all of the coma terms 
[3,1], [5,1], [7,1], etc. are first order in the perturbation, while the other aberrations are second 
or third order in the perturbation.  Hence, coma is by far the dominant aberration after 
wavefront tilt, as we shall see below.)

We now subtract the original OPD from the Zernike series representation to check that the 
two are indeed equivalent.

factor( expand(S-opd) );

0

This is reassuring!  We see by calculating the "cost" of each that the Zernike series 
representation contains quite a few more terms than the heavily simplified (in the Maple 
sense) expression for OPD.

cost(S);

 +  +  + 251 additions 2433 multiplications 30 divisions 17 functions
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cost(opd);

 +  +  + 53 additions 599 multiplications 28 divisions 4 functions

B.3 Analysis of the Wavefront Aberrations

Now comes the fun part.  We will read in, among others, the Zernike plotting function, 
PlotZernikeWavefront().  This Maple procedure produces a color 3D Maple surface plot of 
the residual wavefront after the specified Zernike terms have been subtracted.  Hence, it is a 
useful visual and quantitative tool for determining what are the important aberrations for the 
particular system and misalignment under study.  Typically, one takes a look at a plot of the 
wavefront, from which the aberration with the largest magnitude is usually apparent.  One 
then subtracts the Zernike term(s) corresponding to that aberration and views the resulting 
residual wavefront, from which the next most important aberration is now apparent.  This 
process is repeated as desired, resulting in a series of 3D plots showing all of the important 
aberrations.  In our example here, we use a primary mirror focal length of 100 cm and an input 
beam radius of 10 cm, which sets the output beam radius at 1 cm since we have previously 
taken the compression ratio to be 10.  For this session, a perturbation magnitude of 0.2 arc 
second (~1 microradian)  of primary mirror rotation is specified.  Changing the perturbation 
magnitude only changes the scale of the aberrations and not their relative importance, as long 
as we remain in the regime that is valid within the expansion orders used.

For the first plot, we subtract the average wavefront.  The resulting wavefront residual is

verbosity := 0:

PlotZernikeWavefront( opd, theta, c, [[0,0]],  
    `microns`, evalf(0.2*arcsec), 100.0, 10.0, orientation=[-70,65] );
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(The fifth argument is a string which sets the physical units of the plot, in this case microns.)  
The plot represents a mapping between the input beam coordinates (XY plane) and the output 
wavefront (OPD).  Divide the horizontal scale by the compression factor (  = C 10 in this case) 
to get output beam coordinates.  We recognize that the primary aberration is, as expected, 
wavefront tilt, to the tune of about 1.5 microns at the edge of the beam.  Hence, let us 
additionally remove the tilt term:

PlotZernikeWavefront( opd, theta, c, [[0,0],[1,1]],  
    `microns`, evalf(0.2*arcsec), 100.0, 10.0 );
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The primary aberration is now ~0.2 microns of coma.  All of the coma terms are first order in 
the rotation angle θ, and therefore dominant.  Let us then additionally subtract all orders of 
coma:

PlotZernikeWavefront( opd, theta, c, 
    [[0,0],[1,1],[3,1],[5,1],[7,1],[9,1],[11,1]],  
    `pm`, evalf(0.2*arcsec), 100.0, 10.0 );
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The residuals now consist of a ~100 picometer mix of defocus and astigmatism, which both 
are quadratic in radius.  By removing all of the first order (in θ) terms, we see that the second 
order terms result in aberrations that are over 2,000 times smaller.  Similar to the series of 
coma terms, whose higher-order (in radius) components were of similar magnitude to the 
classical third order coma term [3,1], the defocus and astigmatism terms of various radial 
orders contribute comparable amounts to the aberrations as the classical components [2,0] and 
[2,2], respectively.  Hence, let us additionally remove all defocus and astigmatism terms to get

PlotZernikeWavefront( opd, theta, c, 
    [[0,0],[1,1],[3,1],[5,1],[7,1],[9,1],[11,1],[2,0],[2,2],[4,0], 
    [4,2],[6,0],[6,2],[8,0],[8,2],[10,0],[10,2],[12,0],[12,2]],  
    `fm`, evalf(0.2*arcsec), 100.0, 10.0 );
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Now we recognize exceedingly small 0.2 fm residuals due to trefoil ([3,3], [5,3], etc.) 
aberrations.  These aberrations happen in this system to be third order in the perturbation 
angle θ.  For example, 

ZernikeTerm(3,3,c);
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B.4 Conclusion

We have firmly (and simply!) established that this particular wavefront's dominant aberrations 
are tilt and coma, followed at a much lower level by defocus and astigmatism.  Even more 
important, we have the dependence of each aberration type (as well as of the 
aperture-averaged wavefront) on the perturbation parameter θ, as well as the optical system 

Page 27



parameters, allowing us to determine the sensitivity of these aberrations to (in this case) 
rotation of the primary mirror.  Hence, given an error budget, one can easily determine 
tolerances for the perturbation magnitudes.

save OPD, OPD_avg, opd, S, c, `d:/optics/AESOP/MapleTech/AESOP_article.eqs`;
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